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ABSTRACT

Solar pores are ideal magnetic structures for wave propagation and transport of energy radially-
outwards across the upper layers of the solar atmosphere. We aim to model the excitation and
propagation of magnetohydrodynamic waves in a pore with a lightbridge modelled as two interact-
ing magnetic flux tubes separated by a thin, weaker field, layer. We solve the three-dimensional MHD
equations numerically and calculate the circulation as a measure of net torsional motion. We find that
the interaction between flux tubes results in the natural excitation of propagating torsional Alfvén
waves, but find no torsional waves in the model with a single flux tube. The torsional Alfvén waves
propagate with wave speeds matching the local Alfvén speed where wave amplitude peaks.
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1. INTRODUCTION

The structuring of the magnetic field in the solar at-
mosphere in the form of flux tubes (pores, sunspots, fib-
rils, prominences, spicules, coronal loops, etc.) provides
an ideal environment for mass and energy transfer be-
tween di↵erent regions permeated by the magnetic field.
These structures are also ideal environments for wave
propagation and the transport of energy to the upper
layers of the atmosphere. The most prominent manifes-
tations of magnetic structures in the solar photosphere
are sunspots and pores, locations of the magnetic flux
emergence from the solar interior; the di↵erentiation be-
tween them resides in the existence of the penumbra re-
gion in the case of sunspots. In addition to the di↵erence
in their appearances, these two magnetic structures also
di↵er in their size, lifetime and the average intensity of
the magnetic field. While in the darkest parts of the
umbra, the magnetic field is of the order of 1.7–3.7 kG
(Livingston 2002; Solanki 2003), in pores the magnetic
field attains values of about 0.6-1.8 kG (Simon & Weiss
1970; Solanki 2003).
Solar pores are intermediate structures between small-

scale magnetic flux concentrations in intergranular lanes
and fully developed sunspots with penumbrae (Cameron

et al. 2007). This makes them an ideal laboratory for
studying wave excitation and propagation, including the
dissipation of magnetoacoustic wave energy (Gilchrist-
Millar et al. 2020; Grant et al. 2015), and Alfvén waves
(Morton et al. 2011). These waves traverse upwards
through the layers of the lower solar atmosphere along
the pore’s length which serve as conduits for magnetohy-
drodynamic (MHD) waves (Morton et al. 2011). More-
over, magnetic pores act as waveguides, transmitting
significant wave energy to the upper atmosphere and
thereby influencing the dynamics and energetics of the
lower solar atmosphere (Keys et al. 2018). Observa-
tional evidence has revealed magnetohydrodynamic os-
cillations within solar pores, discernible in line-of-sight
velocities, intensities, and magnetic field strengths (Nel-
son et al. 2021).
Some sunspots and pores exhibit lightbridges –

relatively bright elongated structures cutting across
sunspot’s or pore’s umbra (see Fig. 1, left panel for
an example). Observations reveal that lightbridges may
have a very versatile magnetic structure, which depends
on the overall magnetic structure and evolution of the
active region. A lightbridge can be formed as a result
of two magnetic elements coming together during the
sunspot evolution, leaving a region with a lower verti-
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cal magnetic field at the boundary between the two el-
ements, with the force balance in the lightbridge main-
tained by enhanced (compared to sunspot umbra) gas
pressure (see e.g. Borrero & Ichimoto 2011; Felipe et al.
2016; Jing et al. 2023, and references therein). Light-
bridges appear to posses a predominantly vertical mag-
netic field, although the magnetic field strengths in light-
bridges appear to be significantly lower compared to the
umbrae and, in some cases may be significantly inclined
(see e.g. Felipe et al. 2016). In some cases there might be
an overlying magnetic field forming magnetic a canopy
or a fibril elongated above a lightbridge (e.g. Toriumi
et al. 2015). The magnetic field in lightbridges is very
inhomogeneous, and, in some cases, lightbridges may
have locations with extremely strong magnetic field (5–
10 kG), i.e. much stronger than in umbrae, although
with significantly lower filling factors (⇠0.25 compared
to ⇠1 in umbrae, e.g. Castellanos Durán et al. 2020;
Lozitsky et al. 2022).
Lightbridges in pores have similar characteristics to

those in sunspots: their field is mainly vertical, although
more inclined than in umbrae, and the force balance
is maintained by increased gas pressure (Sobotka et al.
2013; Kamlah et al. 2023). Hence, in the first approx-
imation, the pores with lightbridges can be considered
as two intense magnetic flux tubes joined together.
One notable characteristic of lightbridges is the en-

hanced power of chromospheric oscillations typically ob-
served in the frequency range of 3-5 mHz (Sobotka et al.
2013). Recently Stangalini et al. (2021a) detected tor-
sional Alfvén waves in a Fe I spectral line in a pore under
the presence of a lightbridge. They further emphasised
the importance of torsional Alfvén waves for chromo-
spheric and coronal heating estimating their energy flux.
Stangalini et al. (2021a) also performed a numerical sim-
ulation of a flux tube driven by a kink driver to generate
torsional waves. However, they considered a single tube
model for their numerical simulations, which is not con-
sistent with the observed magnetic configuration of a
solar pore with lightbridge.
In this work, a photospheric pore with a lightbridge

is modeled numerically as two closely-adjacent mag-
netic tubes, which represent magnetic elements with a
thin layer of weaker magnetic field and higher pressure
separating them (see Fig. 1). For the analysis of the
wave propagation, and in order to focus on the essential
physics of waves driven by the presence of the light-
bridge configuration compared with a single pore, we
neglect gravitational stratification and the large-scale
velocity field, therefore our initial configuration is in-
dependent of height for simplicity. Although the em-
ployed model is relatively simple, the configuration ad-

Figure 1. Comparison between an observed pore with a
lightbridge and the lightbridge numerical model. Upper
panel shows continuum intensity for a pore with a light-
bridge in active region AR11005 analyzed by Stangalini et al.
(2021a). This pore was observed on October 15, 2008 at
16:30 UT at 25.2 N, 10.0 With the Interferometric BIdi-
mensional Spectrometer (IBIS) at the Dunn Solar Telescope
(New Mexico, USA). The lower panel presents brightness
distributions in our lightbridge model.

equately reflects the main properties of a sunspot or a
photospheric pore with a lightbridge. Individual oscil-
lating flux tubes driven by kink drivers have already
been studied by Terradas et al. (2008); Pascoe et al.
(2010); Antolin et al. (2014).
An attempt to model a realistic situation in the so-

lar atmosphere was to consider magnetic flux tubes as
being built up from a multiple of cylindrical structures
that show collective motion. Earlier studies by, e.g. Ter-
radas et al. (2008); Ofman (2009); Robertson & Ruder-
man (2011); Soler & Luna (2015); Magyar & Van Doors-
selaere (2016); Shi et al. (2024) showed that in such
systems the interaction between individual structures
modifies the spatial structures and morphology of waves.
Here, for the first time, we are simulating two closely-
adjacent magnetic elements forming a lightbridge under
kink motion.

2. NUMERICAL SIMULATIONS

2.1. Main equations
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We perform three-dimensional ideal magnetohydrody-
namic (MHD) simulations of oscillations in a model rep-
resenting a pore and a pore with the lightbridge using
the Lare3D code where MHD equations are solved in
the Lagrangian form employing a Lagrangian-Eulerian
remap procedure (Arber et al. 2001). The equations
solved by Lare3D are presented in dimensionless form
as

D⇢

Dt
=�⇢r · v, (1)

⇢
Dv

Dt
=(r⇥B)⇥B�rp+ fvisc, (2)

DB

Dt
=(B ·r)v �B(r · v), (3)

D✏

Dt
=�p

⇢
r · v, (4)

p=⇢✏(� � 1), (5)

where v denotes the velocity vector, B represents the
magnetic field, ⇢ indicates plasma density, p corresponds
to gas pressure, ✏ is the specific internal energy, and � is
the ratio of specific heats, here set to 5/3. To address nu-
merical instabilities and manage steep gradients, such as
shocks, a numerical viscosity vector, fvisc, is introduced
(Arber et al. 2001; Caramana et al. 1998).
The model assumes a fully ionized plasma, and the

governing equations are normalized by a length-scale
L0, magnetic field strength B0, and density ⇢0. These
three constants are further utilized to establish normal-
ization for velocity (v0 = B0/

p
µ0⇢ ), pressure (p0 =

B2
0/µ0), time (t0 = L0/v0), specific internal energy

scales (✏0 = v20), and temperature (T0 = ✏0m/kB), where
µ0 is the vacuum permeability, kB is the Boltzmann
constant and m is the average ion mass, defined as 1.2
times the proton mass. While the simulation results
can be scaled with any suitable reference scales, they
are defined here to align with typical values of the pho-
tosphere, specifically L0 = 1 Mm, B0 = 0.17 T, and
⇢0 = 1.67 ⇥ 10�4 kg m�3. Therefore, the normal-
ization velocity and temperature are v0 = 11.7 km s�1

and T0 = 20, 000 K, respectively, and the scale time is
t0 = 85 s.
In our simulations, the normalized computational do-

main box size is 8⇥ 6⇥ 16 in the x, y, and z directions,
respectively. The simulation box is extended in the z-
direction to 16 to minimize the e↵ect of wave reflections
from the upper boundary. However, our analysis only
considers the domain between z = 0 and z = 8. Each
considered model covers a time period that was over 150
Alfvén times.

2.2. Initial and boundary condition

We consider two models: a “reference” configuration
with a single, cylindrical magnetic flux tube, and one
with two partially merged flux tubes with magnetic field
depression between them. The latter configuration is
used to simulate a photospheric pore with a lightbridge.
The initial magnetic field and temperature for these

configurations are shown in Figure 2.
The inhomogeneous initial magnetic field in the single

flux tube model is given as a two-dimensional Gaussian
function centred on the origin

B(x, y) = B0 exp

✓
�x2 + y2

R2
0

◆
, (6)

while in the case of the lightbridge model, the magnetic
field is given as

B(x, y) =B0


exp

✓
� (x� xs)2 + y2

R2
0

◆

+ exp

✓
� (x+ xs)2 + y2

R2
0

◆

� exp

✓
�32x2 + y2

R2
0

◆�
. (7)

The latter term in this equation is used to create
a magnetic field depression between the two partially
merged fluxtubes. This region with the magnetic field
strength lower and the temperature higher than inside
the fluxtubes, represents the lightbridge (see the right
panels in Figure 2. Here R0 = 1.0L0 is the flux tube
radius. The parameter xs which determines the relative
positions of the flux tubes in the lightbridge model is
taken to be 0.8L0. The initial density is assumed to be
constant ⇢(x, y, z, t = 0) = ⇢0, while the pressure dis-
tribution is obtained assuming the magnetohydrostatic
equilibrium condition:

⇢(x, y, z, t = 0)=⇢0, (8)

p(x, y, z, t = 0)=p0 �
B2(x, y, z, t = 0)

2µ0
, (9)

✏(x, y, z, t = 0)=
p(x, y, z, t = 0)

⇢0(� � 1)
. (10)

The ambient pressure value is set to p0 = B2
0/µ0. Hence,

the gas pressure and temperature inside the fluxtubes is
⇠ 2 times lower than outside.
The left panels show the magnetic configuration with

a single flux tube, while the right panels correspond to
the magnetic configuration with two partially overlap-
ping flux tubes, with the overlap region with magnetic
field depression representing the lightbridge. The solid
lines in Figure 2 correspond to iso-contours of Bz = 0.9,
e↵ectively, representing the cores of the fluxtubes.
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Figure 2. The initial conditions for the magnetic field, Bz and the continuum intensity for the single flux tube model (left
panels) and the lightbridge model (right panels). Dashed lines and solid lines represent iso-contours of Bz = 0.1 and Bz = 0.9.
The upper panels show contours of z-component of the magnetic field. The lower panels show contours of temperature, where
the normalizing scales are B0= 0.17 T and T0 = 20000 K.

Periodic boundary conditions are used at the side
boundaries of the model domains (x = �4, x = 4,
y = �3 and y = 3). At the upper boundary of the
numerical domain, we use Neumann boundary condi-
tions, setting a zero gradient for every variable. At the
lower boundary (z = 0), the same zero gradient condi-
tions are imposed on all variables apart from vy. The
vy component of the velocity, which is used as a driver,
is given as

vy(x, y, z = 0, t) = A sin

✓
2⇡

�
t

◆
g(x, y), (11)

where A denotes the driver amplitude that was set at a
value of 0.05 to guarantee vy perturbations stay in the
linear regime and the function g(x, y) is set as

g(x, y) = 0.5

2

41 + tanh

0

@
Rd �

q
x2

4 + y2

0.2

1

A

3

5 . (12)

This function is a constant equal to 1 in the middle of the
lower boundary, in a region with the radius Rd = 1.5,
and reduces to zero near the side boundaries. Therefore,
the bases of the fluxtubes in both models oscillate in y-
direction as one whole, while there driver’s velocity is
zero at the edges of the lower boundary.

The quantity � represents the oscillation period or the
period of the driver (chosen as 10t0, equals to 850 s,
corresponding to the frequency of 1.2 mHz).

3. RESULTS

3.1. Flow evolution

Before analyzing the behavior of the flux tubes, we
will examine the evolution of vorticity and magnetic field
lines over an oscillation cycle. Figure 3 illustrates the
z component of the vorticity field, !z = (r ⇥ v)z, and
velocity vectors at four successive simulation time steps
within an oscillation period for the cases of a single flux
tube (left column) and lightbridge simulations (right col-
umn). As before, the dashed and continuous lines rep-
resent the isocontours of the vertical component of the
magnetic field, Bz, set at 0.1 and 0.9, respectively.
The vorticity is prominently observed in a boundary

layer outside the core of the flux tube, extending to its
external boundary. This vorticity generation seems to
be associated with the kinking motion of the flux tube
core. In the case of the single flux tube, two symmetric
vortices are observed at x = ±0.8 and y = 0, while in
the lightbridge case, there are four vortices along the x
axis. Despite this di↵erence, the vorticity profiles re-
main symmetric, albeit with a higher amplitude in the
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Figure 3. Contours of z-component of vorticity measured at z = 8. The arrows represent the velocity vector at di↵erent
simulation times. The left panel represents the single tube simulation while the right panel the lightbridge model. � represents
the period of perturbation.
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case of a sunspot with a lightbridge. Periodic changes
in the rotational patterns between clockwise and coun-
terclockwise directions characterize the small swirling
motions observed at y = 0 along the x axis. These peri-
odic changes in swirl orientation create a wave pattern
in the vorticity contour, which is visible at the edges
of the flux tubes. This vorticity oscillation generates a
periodic torsional motion that can be associated with a
torsional Alfvén wave. The field lines in the flux tube
core exhibit a kink mode behavior characterized by a
near-zero Bx component, indicative of minimal vortical
motion.
Figure 4 illustrates the outcomes of a power spectral

density (PSD) analysis conducted for vz at z = 4. The
contour plots depict the PSD results for each grid point
at the driver frequency, fD = 1/�. As usual, the max-
imum of PSD corresponds to regions where the power
of waves takes its maximum value. To avoid the initial
transient, these PSDs were computed using time series
data collected from t = 20 to t = 100.
The PSD contour maps for a single flux tube show a

strong signal for vz between the flux tube core and its
boundary, indicating wave propagation. The lightbridge
case displays a similar pattern, but we can see that the
interaction between flux tubes creates an intense signal
in the lightbridge.
The lightbridge case shows, a prominent signal be-

tween the boundary and the pore core. However, this
signal diminishes towards the middle of the lightbridge,
a finding consistent with those reported by Stangalini
et al. (2021b) who noted a lack of noticeable ampli-
tude in the velocity line-of-sight power spectral density
at the lightbridge in observational data for frequencies
of 6 mHz and 8 mHz, and no signal from circular polar-
ization.

3.2. Net circulation

In order to detect the possible existence of azimuthal
motions associated with torsional Alfvén waves, we com-
pute the circulation, �, for each simulation as a measure
of net torsional motion. The circulation, well-known in
fluid dynamics, is defined as the line integral of a veloc-
ity vector field around a closed curve,

� =

I

C
v · dl =

ZZ

S
r⇥ v · dS =

ZZ

S
!!! · dS, (13)

where C is the closed curve and S the surface defined
by the closed curve C, and !!! = r ⇥ v is the vorticity
vector. The circulation integrated over x� y planes for
each simulation case is shown in Figure 5 at di↵erent
time steps. The integrating surface, S, is chosen to be
an isocontour of Bz = 0.7. The area was chosen to be

Figure 4. Contours of PSD of vz measured at z = 4 at
the diver frequency, upper panel displays results for a single
flux tube and the lower panel for the lightbridge model. The
lightbridge case presents a higher power between the pore
core and the boundary.

large enough to capture the vorticity oscillation, while
small enough to capture a single lobe of the flux tube.
The left column features contour plots of Bz, with the
dashed-dot line indicating the integration area set to
correspond to Bz = 0.7, and the dashed and continuous
lines represent the flux tube boundary and its core. The
right column presents the normalized circulation by the
driver amplitude, A. The upper row corresponds to the
single flux tube simulation, while the lower row repre-
sents the lightbridge simulation.
As indicated by the upper right panel, the net circula-

tion is negligible in the single flux tube, as expected due
to the anti-symmetry of the z vorticity contours shown
in Fig. 3. Between t = 0 and t = 40, the net circula-
tion remains very close to zero. This is expected from
the azimuthal symmetry of this configuration, as there
is no preferred direction for net torsional circulation.
However, after this period, some low-amplitude waves
are observed being reflected from the upper boundary
towards the bottom of the domain. Fortunately, these
waves do not compromise the analysis since their ampli-
tude is ten times smaller than the driver amplitude. By
contrast, in the lightbridge case, the net circulation for a
single tube is (in each lobe of the lightbridge) no longer
zero. In this case, the normalized circulation exhibits an
amplitude three times larger than the driver perturba-
tion and propagates as a wave towards the upper bound-



Modeling the effects of a lightbridge on oscillations in a solar pore 7

Figure 5. The upper row shows results for the single flux tube simulation and the bottom row for the lightbridge simulation.
Left panels: contour plots of Bz. The dashed-dot line delimits the path of integration employed to compute circulation, the
dashed line represents Bz = 0.1 and the solid line Bz = 0.9. Right panels: time-distance diagram of the circulation normalized
by the driver amplitude, A.

ary at z = 8. This suggests an upward-propagating
torsional Alfvén mode with a single frequency and con-
stant velocity. This arises from the interaction between
the two lobes in the lightbridge simulation leads to an
asymmetry in each lobe’s vorticity profile, resulting in
a net circulation. Equivalently, the azimuthal symme-
try in each lobe is broken due to the distortion from the
lightbridge, allowing net torsional circulation to develop.
The waves reflected in the lightbridge case are not visi-
ble on the space-time diagram because they have a small
amplitude. The influence of reflected waves can be disre-
garded in this analysis, as their amplitude is more than
ten times smaller than that of the upward propagating
wave.
Figure 6 displays the results of the power spectral den-

sity (PSD) computed for the spatial-time diagram pre-
sented in Figure 5, specifically for the lightbridge case.
The PSD computation involves spatial analysis in the z
direction between t = 40 to 140, followed by averaging
to determine the dominant wavenumber. We selected
this particular time interval to keep the analysis free
from the influence of initial transients. Temporal PSD
is then calculated between z = 3 to 8 to mitigate upper
and lower boundary e↵ects; the result was also averaged
to smooth the signal. The main frequency and the pri-
mary wavenumber were identified and used to compute
a phase speed of 0.531 v0, corresponding to 11.6 km s�1.
The right panel of Figure 6 shows the values of !z for
z = 8 at t = 50. The black dash-dotted lines indicate

locations where the propagation speed equals the local
value of the Alfvén speed. Notably, the phase speed
matches the Alfvén speed within the outer boundary
layer of the flux tube, and more or less in the location
where the vorticity peaks in magnitude, so the wave am-
plitude is strongest. This suggests a torsional Alfvén
wave localized within this layer.

3.3. MHD modes

In order to analyze the nature of perturbations in
the system, we employ the wave decomposition method
described in detail by Mumford et al. (2015). In the
context of linear perturbations in a uniform homoge-
neous magnetized plasma, the ideal MHD equations
have three independent eigenmodes corresponding to the
fast and slow magneto-acoustic waves and the Alfvén
waves. These modes exhibit distinct properties, with
characteristics dependent on the plasma conditions in
which the waves propagate. Decomposing perturbations
into these modes is a non-trivial problem.
Identifying the three modes of oscillation in a 3D ge-

ometry becomes feasible in the presence of flux tubes.
The fast, slow, and Alfvén modes can be associated
with velocity perturbations perpendicular to the mag-
netic field and the flux tube, perturbations parallel to
the flux tube and its surface, and an azimuthal vector
perpendicular to the magnetic field and parallel to the
surface, respectively. Mumford et al. (2015) proposed
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Figure 6. Left panel: PSD applied to circulation in space and time. Right panel: plot of !z for z = 8 at t = 50. The black
dash-dotted line indicates the region where wave speed is equal to Alfvén speed. Green dashed line and solid lines represent
isocontours of Bz = 0.1 and Bz = 0.9, respectively.

the following decomposition for the energy flux

Fk = ⇢v2kcS , (14)

F? = ⇢v2?vA , (15)

F✓ = ⇢v2✓vA , (16)

where Fk, F?, and F✓ are the parallel, perpendicular
and azimuthal components of the energy flux, vk, v?,
and v✓ are the parallel, perpendicular and azimuthal
velocity components, and cS , vA are the sound and
Alfvén speeds. The azimuthal component computed by
n✓ = n? ⇥ nk, where nk is the unit vector parallel to
magnetic field and n? perpendicular to the surface con-
structed numerically within a computational domain as
an isosurface where |B| = 0.8. Given the assumption
that perturbations are small, we consider the isosurface
to be parallel to the magnetic field lines. This 3D sur-
face allows us to obtain the vectors n✓ and n?. In Figure
7, we present the velocity field decomposed into paral-
lel (vk), perpendicular (v?), and azimuthal (v✓) compo-
nents. Notably, the perpendicular velocity component
exhibits a larger amplitude near the driver and decays
along the z direction, while the azimuthal and paral-
lel components demonstrate similar amplitudes along z
direction.
In Figure 8, we show the energy flux decomposition

based on Eqs. (14)-(16). The kink driver induces a
peak in the perpendicular energy flux component, F?,
near the bottom of the domain, which propagates up-
wards and attenuates rapidly. The component Fk has
its minimum at z = 0 and increases with z. In the
absence of any dissipative e↵ect, it is likely that F? is
being converted into Fk as it propagates to higher alti-
tudes. The azimuthal energy flux, F✓, is generated at
the lower boundary by the kink driver, with an apparent

intensification around z = 7. The driver contributes to
both perpendicular and azimuthal perturbations, which
means torsional waves and kink waves; such behavior
has also been observed by Mumford et al. (2015) and
Stangalini et al. (2021a). In our model, plasma � is less
than one, which means that the Fk, F?, and F✓ are asso-
ciated with the dominant eigenfunctions representing a
slow magnetoacoustic, fast magnetoacoustic and Alfvén
waves, respectively (Jess et al. 2015). Therefore, since ✓
is the azimuthal component, F✓ will be associated with
the energy flux of torsional Alfvén wave.

4. CONCLUSIONS

Our investigation focused on a pore with a lightbridge,
which we modeled as two closely-adjacent magnetic flux
tubes separated by a thin layer of weaker field. To
simplify our analysis and in order to focus on generic
properties of wave propagation and generation, we ig-
nored gravitational stratification and large-scale velocity
fields, which allowed us to generate a height-independent
initial configuration. Despite this simplification, our
model e↵ectively captures the primary characteristics of
a sunspot or a photospheric pore with a lightbridge, both
driven by a kink driver at their bases.
An examination of vorticity and field line evolution re-

vealed that no vorticity is generated within the flux tube
core, where the axial field is 90% or more than its peak
value (Bz > 0.9), and the field lines exhibit kink body-
wave motions. Vorticity emerges between the pore core
and its boundary, with the lightbridge scenario demon-
strating intensified vorticity near the lightbridge. Vor-
ticity profiles no longer exhibit symmetry within each
lobe, in contrast to what is observed in a single flux
tube.
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Figure 7. Contours of velocity field decomposed into parallel, vk, perpendicular, v?, and azimuthal, v✓ components.

Figure 8. Contours of energy flux field decomposed into parallel, Fk, perpendicular, F?, and azimuthal, F✓, components.

In the case of a single flux tube, the net circulation
remains minimal due to a cancellation between vorticity
profiles of opposite sign on either side of the tube, re-
sulting from symmetry across the y axis. However, the

presence of two closely adjacent flux tubes disrupts this
balance, leading to a net circulation of significant mag-
nitude in each lobe of the lightbridge. This disruption
causes torsional motion on each side due to their inter-
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action, with torsional waves occurring in the boundary
layer between the edges of the flux tubes and their cores.
Notably, we found that the speed of these waves matches
the local Alfvén speed in regions where wave amplitude
peaks.
Our analysis of the MHD mode decomposition eluci-

dates that the kink driver engenders both torsional and
kink waves. Moreover, the perpendicular energy flux
to the flux tube surface decreases with height while the
azimuthal component increases.
Importantly, we demonstrated that a single flux tube

driven by a kink driver does not exhibit net torsional
motion, a result that contradicts the numerical model-
ing reported by Stangalini et al. (2021a). Our model
establishes a new and crucial understanding: net tor-
sional motion arises from the interaction between the
two lobes of the pore and that including this structur-
ing in the background model is essential for interpreting
waves observed in pores and sunspots with lightbridges.
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Stangalini, M., Erdélyi, R., Boocock, C., et al. 2021a,

Nature Astronomy, 5, 691,

doi: 10.1038/s41550-021-01354-8

Stangalini, M., Jess, D. B., Verth, G., et al. 2021b, A&A,

649, A169

Terradas, J., Andries, J., Goossens, M., et al. 2008, ApJ,

687, L115, doi: 10.1086/593203

Terradas, J., Arregui, I., Oliver, R., et al. 2008, ApJ, 679,

1611, doi: 10.1086/586733

Toriumi, S., Katsukawa, Y., & Cheung, M. C. M. 2015,

ApJ, 811, 137, doi: 10.1088/0004-637X/811/2/137


